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Local Density Estimation and Dynamic
Transmission-Range Assignment in
Vehicular Ad Hoc Networks

Maen Artimy, Member, IEEE

Abstract—Vehicular ad hoc networks have several character-
istics that distinguish them from other ad hoc networks. Among
those is the rapid change in topology due to traffic jams, which
also disturbs the homogeneous distribution of vehicles on the road.
For this reason, a dynamic transmission range is more effective in
maintaining the connectivity while minimizing the adverse effects
of a high transmission power. This paper proposes a scheme
that allows vehicles to estimate the local density and distinguish
between the free-flow and the congested traffic phases. The den-
sity estimate is used to develop a dynamic transmission-range-
assignment (DTRA) algorithm that sets a vehicle transmission
range dynamically according to the local traffic conditions. Sim-
ulations of several road configurations validate the quality of
the local density estimation and show that the DTRA algorithm
is successful in maintaining the connectivity in highly dynamic
networks.

Index Terms—Ad hoc networks, connectivity, density estima-
tion, inter-vehicle communications, transmission range, vehicular
ad hoc networks.

I. INTRODUCTION

ODE DENSITY has a great impact on the performance

of vehicular ad hoc networks (VANETS) by influencing
some factors such as capacity, routing efficiency, delay, and
robustness. Waves of traffic jams, whether caused by constraints
in the transportation network, traffic controls, or fluctuations in
speed, cause the network’s density to vary from one location
to another, thus disturbing the homogeneous distribution of
nodes. Moreover, the abrupt and frequent change in density
creates a highly dynamic topology. This topology change would
cause severe degradation to the network’s performance (in-
creased collisions and interference, excessive broadcasts, too
many routing paths, etc.) if the protocols in VANETS were not
designed to handle such conditions.

Controlling the communication range by adjusting the trans-
mission power can be used to mitigate the adverse effects of
high node density. The choice of the communication range has
a direct impact on connectivity, which is a fundamental property
of an ad hoc network. In a VANET, a static transmission
range cannot maintain the network’s connectivity due to the
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nonhomogeneous distribution of vehicles and rapid change of
traffic conditions. It is shown in [1] and [2] that a dynamic
transmission range is needed to maintain the connectivity in
nonhomogeneous networks to take advantage of power savings
and increased capacity.

In this paper, we derive a relationship that allows a vehicle
to estimate its local traffic density. This relationship is used to
develop the dynamic transmission-range-assignment (DTRA)
algorithm that adjusts a vehicle’s transmission range according
to the local traffic conditions. The DTRA algorithm requires
no external information (such as vehicle position). Moreover,
there is no communication overhead involved since the algo-
rithm uses only the vehicle’s internal state to determine the
transmission range. The algorithm is transparent to the data
communication protocols. Therefore, it can be integrated with
the existing systems with little or no change to the latter. The
algorithm is highly adaptable to traffic conditions (density and
speed) that may change in a very short time due to traffic jams
or road constraints.

We used Pipes’ car-following model [3], the two-fluid model
[4], [5], and the Nagel and Schreckenberg (NaSch) vehicle
traffic model [6] as the main analytical tools to derive the re-
lationship for the local density estimate. Simulations of vehicle
traffic using RoadSim [7] are employed to validate the quality
of the analytical estimates and to measure the performance for
the DTRA algorithm in several highway configurations.

The remainder of this paper is organized into the following
sections. In Section II, a brief introduction to the relevant topics
in traffic theory is provided. Section III describes the NaSch
model, the road configurations used in the simulations, and
the assumed communications model. Section IV discusses the
effect of vehicle density on the minimum transmission range re-
quired to maintain connectivity. The density-estimation scheme
is provided in Section V. Section VI describes the DTRA
algorithm and its performance evaluation. The conclusion is
provided in Section VIIL.

II. INTRODUCTION TO TRAFFIC-FLOW THEORY

Traffic-flow theories explore relationships among the main
quantities: vehicle density, flow, and speed. The flow ¢ mea-
sures the number of vehicles that pass an observer per unit
time. The density k represents the number of vehicles per unit
distance. The speed w is the distance that a vehicle travels per
unit time. The units of these quantities are usually expressed
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Fig. 1. Fundamental diagram of road traffic (flow—density relationship).

in vehicles per hour per lane (veh/h/lane), vehicles per kilo-
meter per lane (veh/km/lane), and kilometers per hour (km/h),
respectively. In general, traffic streams are not uniform, but
they vary over both space and time. Therefore, the quantities
q, k, and u are meaningful only as averages or as samples of
random variables [8]. The three quantities are related by the
so-called fundamental relationship [9]

qg=1uXxk. (D

Several theories attempt to define the relationships among
each pair of variables in (1), but no single theory provides
the complete picture. The following sections provide a brief
introduction to the principles that are most relevant to the scope
of this paper.

A. Speed-Density Relationship

Car-following models [10] provided an early means to
describe the speed—density relationship. These models apply to
single lane with dense traffic without overtaking allowed. They
also assume that each driver reacts in some specific fashion to
a stimulus from the vehicle(s) ahead or behind. The models
do not apply in low densities where interactions between the
vehicles disappear.

The car-following model proposed by Pipes [3] assumes that
drivers maintain constant time headway between vehicles. This
model results in the following speed—density relation [9]

1 1
u)\<k kjam> 2)

where )\ measures the sensitivity of the vehicle interaction, and
Ejam 18 the maximum vehicle density at traffic jam.

B. Fundamental Diagram of Road Traffic

The fundamental diagram of road traffic describes the
flow—density relationship. A typical ¢—Fk relationship follows
the general shape of Fig. 1. The figure shows that the flow
is zero when there are no cars on the road and when there is
a complete traffic jam at maximum density kj.m. The shape
of Fig. 1 suggests that there are two ¢—Fk regimes. The left
branch O-A of the relationship represents the free-flow traffic at
densities below k. In the free-flow phase, interactions between

the vehicles are rare because of the low density. As a result,
vehicles can travel at free-flow speed u¢, which is determined
by the slope of the left branch us = ¢/k.

At densities above ko, traffic becomes congested and hin-
dered by traffic jams. The g—k relationship of the congested
traffic is represented by the right branch A-C. Empirical evi-
dence and traffic simulations suggest that traffic may also be
in a coexistence phase. In densities between k; and ko, drivers
may accept shorter headway (time gap) between the vehicles,
thus achieving the maximum flow gy, at the critical density ks.
High fluctuations of speed in this traffic phase may cause a
breakdown in the flow and derive the traffic into the congested
phase.

At densities higher than k;, speed can be expressed as a
function of density as in (2). By substituting (2) in (1) and
accounting for low-density traffic, a piecewise linear ¢g—k re-
lationship can represent the triangle O-A-C of Fig. 1 [9]

k
Kjam ﬂ )

q = min [ufk, Gjam (1 —
where gjam = q(k1) = A.

C. Traffic Jams and Phase Transition

Traffic jams are caused by geometric constraints such as an
intersection, an accident, or an access ramp. These scenarios
can be described by a standard queueing system where the jam
at the bottleneck will grow spatially backward if the arrival
rate (inflow) is greater than the service rate (outflow) of the
bottleneck. The spatial growth can also be described by the
theory of kinematic waves [11].

It is also suggested that waves of traffic jams may occur
without the presence of obvious constraints but mainly due to
fluctuation (noise) in speed. These fluctuations may be caused
by bumps, curves, lapses of attention, and different engine
capabilities. In moderate traffic flow, a noise of high amplitude
may cause the traffic to become unstable, and traffic jams start
to appear [12]. This type of traffic jam can be described by
the theory of kinematic waves and has been studied extensively
using cellular-automata (CA) models [13], [14].

The transition from the free-flow traffic to the congested
traffic can be described with the help of the space-time diagram
of Fig. 2. A space-time diagram shows the vehicle positions
as they would appear in a series of aerial photographs taken at
fixed time intervals of a road section and lined-up vertically
according to their time index. A vehicle moving at constant
speed will appear as a diagonal line in the space-time diagram,
while a stationary vehicle will appear as a vertical line.

Fig. 2(a) shows the traffic flow at density lower than %y (in
Fig. 1), where a vehicle can travel freely without the influence
from other vehicles. Fig. 2(b) shows the traffic whose density
is in the range [k1, k2]. At this density, drivers may adapt to
the dense traffic by slowing down and maintaining a minimum
safety distance. However, high fluctuations in speed by a lead
vehicle may break the flow and create traffic jams. A traffic
jam appears in Fig. 2(c) as a cluster of vertical lines is moving
backward as time progresses. Vehicles that are not caught in
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jams are traveling in the free-flow traffic. Traffic jams grow as
density increases and merge with other traffic jams. Eventually,
the entire road section is occupied with one wide traffic jam.

III. VEHICLE NETWORK SIMULATION

The following three sections describe the simulation setup
used for this paper.

A. Vehicle-Mobility Model

We used the NaSch vehicle traffic model as the main an-
alytical and simulation tool for this paper. The basic NaSch
model [6] consists of a 1-D CA grid of L cells and defines a
set of rules for the vehicle’s movement through the grid. Each
cell represents a small section of the road, which can be either
empty or occupied by one vehicle. The vehicle may travel in
one direction from one cell to another at the integer speed
of [0, Unax), Which corresponds to the number of cells that a
vehicle can advance in one time step, provided that there are
no obstacles ahead. The cell size is chosen to correspond to the
reciprocal of maximum vehicle density kjam in traffic jams.

A vehicle’s speed is updated in each time step by calculating
the gap to the lead vehicle. The gap size determines whether
a vehicle can accelerate or slow down. At the end of the step,
the vehicle may be moved to another cell according to its new
speed. Stochastic behavior is added to the system by slowing
down the vehicle randomly. A slightly modified model, which is
called the NaSch model with a slow-to-start rule (NaSch-S2S),
is known to exhibit phase transition from free flow to traffic
jams [13].

We developed a traffic simulator (RoadSim) to generate
vehicle-traffic movement based on the NaSch-S2S model [7].
RoadSim adds several extensions to the original model to
enable the simulation of multilane traffic and traffic across in-
tersections. RoadSim also generates network graphs, which will
be used to determine the minimum transmission-range (MTR)
values in the VANET simulations described in Section IV-B.

(b)

Space-time diagram illustrating. (a) Free-flow traffic, (b) traffic approaching critical density, and (c) a traffic jam in a 200-m segment (time progresses
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Fig. 3. Highway configurations used to evaluate the local density estimate
and DTRA algorithm. (Top) Racetrack configurations (A and B). (Bottom)
Intersection configurations (C and D). The data collection is limited to the
shaded area.

B. Simulated Highway Configurations

This section describes the four highway configurations that
are used in Section V-C to simulate vehicle traffic and evaluate
a vehicle’s ability to estimate its local density and detect the
traffic condition. The same configurations are also used in
Section VI-C to evaluate the DTRA algorithm. In all experi-
ments, data are collected from 20 simulation runs.

In two configurations, which are represented by Fig. 3 (top),
traffic density is increased gradually in a closed-loop highway
so that traffic conditions can change gradually from free-flow
to congested traffic. In Configuration (A), vehicles travel in
a single-lane highway where overtaking is not allowed. The
highway is in the form of a racetrack of 7.5-km length, as
shown in Fig. 3 (top). Vehicles enter from a parking facility at
a rate (flow) of 60 veh/h and continue to travel around the track
indefinitely, which causes the vehicle density to increase until
the jam density is reached, and no more vehicles can enter. All
vehicles have the same maximum speed of 135 km/h.

The racetrack in Configuration (B) allows the vehicles to
travel on three lanes and pass each other. Vehicles in this con-
figuration are divided into three classes. Slow vehicles compose
15% of all vehicles, and their maximum speed is set to 81 km/h.
Another 15% of vehicles can travel at maximum speed of
135 km/h. The remaining vehicles have a maximum speed of
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108 km/h. This distribution reflects the 85th percentile rule that
is used as a guide to set the speed limit on highways so that 85%
of vehicles will travel below the limit. Note that the maximum
speeds are meaningful only in the free-flow traffic. In higher
densities, vehicles travel at lower speed, which is unrelated
to their maximum speed. The inflow rate of vehicles is set to
300 veh/h. Simulation time for configurations (A) and (B) is
60000 s.

In the other two configurations, which are represented by
Fig. 3 (bottom), the free-flow traffic is interrupted by an inter-
section, which causes a rapid change in vehicle density across
the intersection. Configuration (C) consists of a single-lane
highway of 7.5 km with a signalized intersection in the middle.
Vehicles enter from a parking facility at one end of the highway,
at flow of 1800 veh/h, and exit from the other end. The traffic
signal has a cycle of 1 min that is divided equally between the
red and green phases. In this open-loop highway, a traffic jam
occurs upstream from the red light. The choice of the traffic
flow and the red time parameters ensures that the traffic jam is
created periodically throughout the simulation.

There are two traffic flows in Configuration (D). Nonpri-
ority traffic faces a stop sign at an unsignalized intersection,
while the priority traffic can proceed through the intersection
uninterrupted. The priority flow is set to g, = 900 veh/h, while
the nonpriority flow is set to ¢, = 600 veh/h. Simulation time
for configurations (C) and (D) is 25000 s.

C. Communications Model

In the discussion of connectivity, the VANET is modeled by a
graph. The graph G = (V, E) consists of a set of nodes V' C R
in the Euclidean plane and a set of edges F C V2. Nodes
represent vehicles, whereas edges represent communication
links between the vehicles.

It is assumed in this communication model that all vehicles
are equipped with wireless transceivers. Vehicles can adjust
their transmission power to any value between zero and the
maximum power level. The maximum power level is assumed
to be equal for all vehicles. An edge (v;, v;) may exist if and
only if the Euclidean distance between the vehicles v; and v;
is less than or equal to the shorter transmission range between
them, i.e.,

E = {(vi,vj) € VQ\ |z; — x| < min(ri,rj)} 4

where x;, r; are the position and transmission range of the node
v;, respectively. Equation (4) results in an undirected graph.
The choice of distance as the primary factor in connectivity
is appropriate since the focus of this paper is on the vehicle
distribution and density, which both affect the distance among
vehicles.

IV. STATIC TRANSMISSION RANGE

Extensive research is dedicated to determine the MTR re-
quired to maintain connectivity in mobile ad hoc networks
(MANETS). The MTR corresponds to the minimum common
value of the nodes’ transmitting range that produces a con-
nected communication graph. The motivation behind this re-

search is the difficulty, in many situations, to adjust the nodes’
transmitting range dynamically, making the design of a network
with a static transmitting range a feasible option.

A. Related Work

VANETSs can be modeled as 1-D networks, where nodes
(vehicles) are placed along a line. A 1-D network is considered
connected if there is no gap wider than the transmission range
between any pair of successive nodes. Using this model, Santi
and Blough [15] estimate the lower and upper bounds for the
transmission range, and Desai and Manjunath [16] provide a
probability for gap existence among nodes.

In 1-D networks of infinite size, the transmission range is
related to the node density rather than the line’s length [17].
Connectivity in infinite networks is limited to short-range com-
munications, and a large-scale ad hoc network is not feasible
because it is almost surely divided into an infinite number of
partitions. The same conclusion also applies to strip networks
(networks of infinite length in one dimension and a finite length
in the other) [18]. These findings suggest that a VANET should
tolerate a certain level of partitioning.

The work presented in [15]-[18] assumes a homogeneous
distribution of nodes. It is shown in Sections II and IV-B that
this assumption is not always valid in VANETSs due to traffic
jams and bottlenecks. It is shown in [19] that nonhomogeneous
distribution of vehicles results in an increase in the MTR in
dense traffic.

In addition to connectivity, the choice of transmission range
affects other aspects of VANETS’ performance. A longer trans-
mission range may help stabilize the network by increasing
the lifetime of communication links, but it has adverse effect
on other desirable attributes. Thus, lowering the transmission
range to the point where it is just enough to reach an adjacent
vehicle reduces the interference range and increases the net-
work throughput linearly [20].

Many studies in VANETs focus on the free-flow traffic in
their design and analysis of new protocols (e.g., [21]-[23]).
The studies that investigate connectivity either analytically or
using simulations also set the traffic conditions to free flow
[24], [25]. This choice allows for the greatest flexibility in
controlling each of the vehicle traffic parameters (speed, flow,
and density) independently. We deal with the entire density
range and show that mobility and speed cannot be always
considered independent from density.

B. Minimum Transmission Range

In this section, we illustrate the effect of vehicle-traffic
characteristics on the MTR when density changes from free
flow to a total traffic jam. We should emphasize that increasing
the density not only increases the number of vehicles on the
road but also creates traffic jams and lowers the average speed
of vehicles when the density is higher than some critical density.

In general, the MTR is determined by constructing a mini-
mum spanning tree (MST) among all vehicles in the network.
The MTR is the longest edge in the MST [26]. In a single-lane
VANET, the MTR is simply the widest gap among vehicles.
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Fig. 4. MTR statistics in (a) one-lane highway segment and (b) three-lane highway segment. MTR values (c) across a traffic light and (d) across a stop sign

(only 1% of points are shown to reduce the clutter).

Simulations are used to determine the MTR needed to con-
nect a wireless network among vehicles in the road configura-
tions of Section III-B. The MTR is determined by constructing
a spanning tree within the shaded road segments of Fig. 3 in
every simulation time step. Then, the MTR value is stored along
with the vehicle density within the segment. The data collected
from the simulations are classified into 100 density intervals
that cover the entire density range. The basic statistics of the
MTR are calculated within each energy interval to plot the MTR
versus the density values for each scenario.

The solid line in Fig. 4(a) shows the mean value of MTR
versus density in the single-lane road configuration. At low
densities, the MTR decreases as density increases. At the transi-
tion point between the free-flow and the dense traffic, the MTR
increases again and then resumes its decline until it reaches its
minimum value at a total traffic jam. Fig. 4(a) indicates that
despite the higher density, a longer MTR is needed to connect
the vehicles beyond the phase transition point of k. ~ 1/6.

The sudden increase in MTR near the point of phase tran-
sition is caused by the creation of traffic-jam waves that result
in some vehicles being clustered in small areas, while others

are spread in less dense traffic, which has the effect of dis-
turbing the homogeneous distribution of vehicles [as shown in
Fig. 2(c)]. As density increases, traffic jams increase in size and
merge with others until the entire road is occupied by one large
traffic jam. Consequently, the MTR decreases until it reaches
its minimum value of 1/kjam (the distance between the two
vehicles from front bumper to front bumper).

The plot of average MTR and the average maximum MTR
are compared with three other relations: The analytical lower
bound of MTR in nonhomogeneous traffic is provided by [19]

In(L)

k b
re(k) = In(L)
kg

kE <k

J— (5)
+ é In (m) , k> kc

where kr is the density of the free-flow traffic escaping from
a traffic jam and is derived from the maximum speed. The
critical density k. separates the free-flow and the congested-
traffic modes. Equation (5) was used to emphasize the transition
point between the free-flow and the congested traffic phases.
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Fig. 4 shows that (5) overestimates the lower bound when the
density approaches a wide traffic jam, as explained in [19].
The absolute maximum MTR r,,.x for a network of finite
length L is needed if all but one vehicle is packed at the distance
of 1/kjam from each other in one side of the road, while the
remaining vehicle is located at the opposite side; therefore

k>+1. ©)

jam kjam

rmax:L<1_

The graph in Fig. 4(a) shows that the average maximum MTR
can be approximated by [15]

Lin(L)
r < A +

aL. )

Equation (7) (with o = 0) was introduced in [15] as an
empirical estimate for the upper-bound MTR in 1-D ad hoc
network where nodes are assumed to be distributed homoge-
neously. When applied to the simulation results of the single-
lane configuration of Fig. 4, we find that a closer estimate can be
obtained by raising the upper bound by a fraction of the road’s
length 0.25L. The need for the added term is attributed to the
effect of the nonhomogeneous distribution of vehicles.

In the multilane configuration of Fig. 4(b), the critical density
is moved higher to k ~ 1/4 due to the lower average free-
flow speed. The MTR is lower than the single-lane case by a
factor of 3 due to the increase in the number of vehicles by the
same factor to achieve the same density (per lane). The average
maximum MTR can be approximated by (7) with o =~ 0.

MTR statistics in the next two configurations are similar to
Fig. 4(a). Therefore, instead of showing the statistics, Fig. 4(c)
shows a scatter plot of the actual MTR values to emphasize
the effect of the abrupt change in traffic conditions from dense
traffic behind a red light to free flow a few seconds after the
light turns green. This situation is shown in the figure by the
presence of two clusters of MTR values. The clusters at high
and low densities correspond to the highway segments upstream
and downstream from the intersection, respectively. The gap
between the clusters indicates that the transition between the
two densities is abrupt and takes the form of a shock wave [11].
Fig. 4(d) shows similar results, although the delay encountered
by the vehicles upstream of the intersection is random and
caused by the wait for priority traffic to clear. The last two con-
figurations emphasize the rapid change of topology in VANETSs
and the importance of detecting the local traffic conditions in
order to adapt the operation of the communication network
accordingly.

V. DETECTION OF LOCAL TRAFFIC CONDITIONS

In this section, we derive a relationship for local density
estimate based on the car-following model (Section II-A), the
NaSch-S2S model (Section III-A), and the two-fluid model
(discussed later). This paper represents a novel approach to
density estimation that depends only on the vehicles’ mobil-
ity pattern. Compared to elaborate systems such as [27], the
density estimate derived here does not require any exchange of
information among vehicles or with a central infrastructure.

Moreover, this section shows that a vehicle can distinguish
between the free-flow and the congested traffic conditions by
monitoring its own fraction of stopped time. This value serves
as an order parameter to detect the local traffic condition. This
can be significant in identifying the density region where the
local density estimate is valid.

A. Estimation of Local Density

Car-following models suggest a number of relationships
between the average speed and density of vehicles such as
the Pipes’ equation (2). From such relationships, the average
vehicle speed can be expressed as a function of density

u = u(k). (®)

In addition, the two-fluid theory relates the fraction of
vehicles that are stopped in traffic f, to the average speed of
all vehicles (including vehicles that are stopped due to traffic
conditions but not parked vehicles) [4], [5]

u = umax(l - fs)nJrl (9)

where 7 is a parameter that indicates the quality of service in
the transportation network. The value of f,; can be measured
by an external observer counting the number of vehicles in the
traffic. Note that intentionally parked vehicles are not consid-
ered part of the traffic. Instead, they form a part of the street
configuration [4].

Moreover, the two-fluid theory relates the stopping time T
of a test vehicle circulating in a network during a trip of time 7}
to the average fraction of stopped vehicles by [4], [5]

T
fs = T (10)

Equation (10) represents an ergodic principle embedded in
the model, i.e., the network conditions can be represented by
a single vehicle appropriately sampling the network. Because
of this property, a vehicle is able to estimate the density of the
surrounding traffic.

To proceed with the derivation of the density estimate, as-
sume that the speed—density relationship is given by (2). This is
a reasonable assumption given that the equation is derived from
a constant headway car-following model (in which drivers try
to maintain a minimum safety headway), and it closely matches
the speed—density relationship of the NaSch-S2S model.

From (2), the normalized vehicle density %’ is given by

u -1

where k' = k/kjam, %' = u/Umax, and X = A/(UmaxKjam),
respectively.
From (9) and (10), the normalized average vehicles’ speed is

(1)

12)
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TABLE 1
CALCULATED VALUES OF A, k1, AND k¢

Road configurations | Umax = 135km/hr | Umax = 81km/hr
A 0.5557 0.6004
k1 0.0911 0.1433
ke 0.1667 0.2500

Equation (12) can be substituted in (11) to provide the means
for a vehicle to estimate the density of the surrounding traffic
by monitoring its own stopping time. The resultant local density
estimate is denoted K. Therefore

-1

1—1T,/T;)"*+1
(0-T/T)

K= v

13)

The difference between the density obtained from (13) and
the one obtained directly from (11) is that the latter provides
the global traffic density in a highway segment. Measuring
this density requires information about the average speed of
vehicles located within the segment, which cannot be obtained
without the assistance of an external observer or an elaborate
information exchange among the vehicles, such as in [27]. The
local density estimate I, on the other hand, depends only on the
traffic pattern of the vehicle performing the estimation, given by
T, /T;, and reflects the local traffic conditions surrounding the
vehicle.

Before estimating vehicle density using (13), the values of 7,
A, and T} must be determined. Both 7 and A reflect the traffic
service level of the road and can be determined statistically or
by simulations. Our simulations (not reported here) show that
in highway scenarios, n &~ 0 and 1/\ ~ 1.8s, which is linked
to the safety time headway between vehicles that results in a
flow of just above 2000 veh/h/lane (gjam in Fig. 1). Both values
were also determined analytically for the NaSch-S2S model in
[28], as shown in Table 1. Reference [4] uses time-lapse aerial
photography to determine several traffic parameters, including
7, in an urban environment. The choice of the trip time 7} is
discussed further in Section V-B.

Equation (13) inherits the limitations of the car-following
model, which means that it cannot provide an estimate of den-
sity in free-flow traffic where there are no interactions between
vehicles. Therefore, a vehicle should be able to identify when
the estimate is valid.

B. Fraction of Stopped Vehicles as an Order Parameter

The state of vehicle traffic can be detected using the fraction
of stopped vehicles (10) as an order parameter since it exhibits
similar characteristics [12]. In free-flow traffic, all vehicles are
moving (fs = 0). Once a traffic jam is created, vehicles stop
when they join the traffic jam at its end, while other vehicles at
the front accelerate away from the traffic jam. From an external
observer’s perspective, there is always a fraction of vehicles that
are stopped completely (fs > 0).

From a single vehicle perspective, only the presence of a lo-
cal order (a local traffic jam) is detectable if T /T is used. This
provides useful information since a vehicle in a VANET is most
affected by its local conditions (e.g., contention during access

to a shared communication channel). Therefore, a vehicle may
use the value of T /T; directly to detect whether it is traveling
in free-flow or congested traffic.

Note that the use of the ratio 7,/7; to estimate density
offers a couple of practical advantages over the use of the
vehicle’s speed directly in (11) (assuming that speed is ergodic):
1) The stopped time is easily measured, and it is independent of
the vehicle’s speed; and 2) the speed capabilities are different
among vehicles, which results in different density estimates
within the same traffic condition.

Equation (10) is implemented as a moving average filter
of the speed samples u, obtained from the speed sensor of
a vehicle at regular time intervals. The order parameter is
given by

Ty—1

1
fs,T = i Z 5(”7‘—1')

i=0

(14)

where f ; is the fraction of stopped vehicles at time 7, and ()
is the unit impulse function (§(0) = 1).

Given the interpretation of fs as the moving average filter
of the vehicle status (stopped versus moving), the choice of
window size T} affects two filter properties: the reduction of
noise and the step response. To ensure that a vehicle is able
to detect and react quickly to the change in traffic conditions,
the value of T; should be on the order of a few seconds.
However, a small value of T3 results in a noisy estimate of the
order parameter. Considering that vehicles in highway traffic
are expected to be constantly moving, any brief stops should
indicate traffic congestion. Trial simulations show that a choice
of Ty = 10 s results in a high correlation between the actual
density and its estimated value by vehicles in the highway
configurations described in this paper.

C. Evaluation of Density Estimation

Simulation of highway segments are used to determine
whether (10) and (13) can provide a reasonable indication of
change in traffic conditions and estimate the density. In the
simulations, vehicles calculate the ratio T /T; and K in every
simulated time step. This information is later compared with
the actual density from an observer’s perspective. Since vehicle
density changes over space and time, the measure of the density
over the entire road segment does not reflect the local traffic
conditions experienced by vehicles. Therefore, local densities
are measured over short road segments.

To verify the validity of (10) as an order parameter, the
number of vehicles /N and the number of stopped vehicles N
are counted in a small section of length 37.5 m every simulation
time step. Then, block measurements of 120 time steps are
used to obtain a single value of the fraction fs = Ng/N. The
values of f, are plotted versus the density value k, which
is obtained in the same road section. Fig. 5 summarizes the
results for three road scenarios similar to configurations (A)
and (B) in Section III-B: a one-lane road where vehicles have
a maximum speed of Upax = 135 km/h or Upax = 81 kim/h
and a three-lane road where vehicles have a maximum speed of
Umax = 135 km/h.
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figure, the value of f, rises above zero starting from density
k1 (see Section II); however, in some instances, the free-flow
traffic (fs = 0) may exist in densities up to k. > ki, beyond
which, the high density does not allow free-flow traffic.

The observations in Fig. 5 and Table I support the discussion
of Section V-A. The value of f; = Ns/N =T;/T; can be
used to distinguish between the free-flow and congested traffic
conditions.

To determine whether (13) can provide an accurate estimate
of the local density, vehicles calculate K in every simulation
time step. This information is compared with the actual local
density from an observer’s perspective. Since vehicle density
changes over space and time, the measure of the density over
the entire highway segment does not necessarily reflect the local
traffic conditions experienced by vehicles at a given location.
Therefore, to provide accurate measurement of local densities,
a highway segment of 134 cells (1005 m) [the shaded area in
Fig. 3 (top)] is divided into short sections of 20 cells (150 m)
each. The density in each of these segments is determined
independently in every time step.

Fig. 6 shows that the K — k relation deviates from a straight
line at densities within the free-flow range (k < 1/6 for one-
lane configuration and k < 1/4 for three-lane configuration).
Within this range, (13) has a constant value of ~ 0.1 when
T, = 0 (the vehicle is in constant motion). At higher densi-

Density, k

Fig. 6. Density estimate K versus actual density k£ in one- and three-
lane roads.

ties, the estimate K approaches the K = k line in both road
configurations.

VI. NONHOMOGENEOUS
TRANSMISSION-RANGE ASSIGNMENT

The topology of an ad hoc wireless network is the set of
communication links between node pairs used to exchange
information packets. Unlike wired networks, the topology of a
wireless network may change form due to some uncontrollable
factors such as node mobility, weather, interference, or noise.
The topology can also be shaped by controlling some parame-
ters such as transmission power and antenna direction [2].

A. Related Work

Power control techniques are considered in the literature
for throughput enhancement, link quality protection, Topol-
ogy Control (TC), power conservation and/or a combination
of them. The power control at the Medium Access Control



408 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 8, NO. 3, SEPTEMBER 2007

(MAC) layer can effectively increase the throughput by al-
lowing more concurrent transmissions in the network if the
designed protocol carefully maintains connectivity. Since the
transmission power controls the bit error rate at the receiver,
it helps to maintain the quality and reliability of the wireless
link. Moreover, power control can also be employed as a power
saving mechanism in order to extend the lifetime of the power-
limited nodes.

An ideal power control protocol should be fully distributed,
asynchronous, and use local information. In general, there is
a tradeoff between the quality of information used by the
protocol (such as timely and accurate node positions) and the
cost (additional hardware) or overhead (exchange of messages)
required [29].

There are several approaches to distributed TC that result
in nonhomogeneous transmission-range assignments. In the
location-based approaches [2], [30], the nodes are assumed to
be able to obtain exact node locations. This information can
be exchanged between nodes and used to build an optimum
topology in a fully distributed manner. The drawback to this
approach is that it requires location information that can be
provided only by an additional hardware (e.g., GPS) and/or
message overhead.

In the direction-based approaches, a receiver is assumed to
be able to determine the direction of the sender when receiving
a message. In [31] and [32], it is shown that the network
connectivity can be guaranteed if there exist at least one neigh-
bor in each cone of a certain angle centerd at the node. The
neighbor-based approach is based on maintaining the number
of neighbors reached by a node within certain thresholds by
adjusting the transmission power [33]. This approach is simple
but does not guarantee connectivity.

The effect of mobility on these schemes is the message
overhead generated to update the nodes’ transmitting range in
response to the change of topology. The amount of this over-
head depends on the frequency of topology change. Therefore,
it is intuitive that a mobility-resilient topology control protocol
should be based on a topology that can be computed locally and
requires little maintenance in the presence of mobility. Many
of the topology control protocols presented in the literature
meet this requirement. However, only some of them have been
defined to explicitly deal with node mobility [29]. The protocols
[2], [33] are explicitly designed to deal with node mobility.
They are zero-overhead protocols since the estimation of the
number of neighbors is based on the overhearing of data and
control traffic.

Our approach to dynamic range assignment is closely related
to a class of topology control algorithms that control a node’s
degree (number of neighbors) by adjusting the transmission
power [34]. These protocols depend on an exchange of infor-
mation such as in [30] or on some protocol feature as in [35].
Our algorithm, on the other hand, depends only on a vehicle’s
mobility and does not require any exchange of messages.

B. Dynamic Transmission Range Algorithm

The DTRA algorithm is a Transmission Power Control
(TPC) mechanism that employs information about the local

vehicle density estimate and the local traffic condition (free-
flow versus congested traffic) to set a vehicle’s transmission
range dynamically. In the DTRA algorithm, no information
about neighboring nodes is collected, and no central authority is
required. A vehicle can determine its transmission range based
on its own mobility pattern, which provides hints about the
local traffic density. In this regard, the algorithm is related to
a class of algorithms that require no message exchange for
their operation. However, unlike these protocols that depend
on overhearing of data and control traffic to determine the
transmitting power level [2], [33], [35], the DTRA algorithm
depends on estimation of vehicle density. As a result, the
protocol is transparent to data communication protocols and can
be used in conjunction with existing protocols.

It can be concluded from the results of Section IV-B that if
all vehicles had to use a homogeneous transmission range for
communication, the range should keep the vehicular network
connected in all traffic conditions. This can be achieved only if
the transmission range is wide enough to accommodate condi-
tions such as free-flow traffic and traffic across intersections.

Alternatively, estimation of traffic density provides the nec-
essary means to develop a TPC algorithm to set a vehicle’s
transmission range dynamically as traffic conditions change. In
its basic form, the algorithm maps the time-varying values of
T,/T; into a transmission range r at regular time intervals

r=D(T,/Ty). (16)

Algorithm 1 Dynamic Transmission-Range Algorithm.

Input a, X > constants
Input MR > maximum transmission range
1: function D(T,/T})
20 fs Ts/Tt
3: if f¢ =0 then > free-flow traffic
4: TR «— MR
5:  else > congested traffic
6 K [(1—f)/N+1]"!
7: t1 — MR x (1 — K)
8: t2 < /MR x log(MR)/K + a x MR

9: TR «— min(y, t2)
10:  end if

11:  return TR

12: end function

> dynamic transmission range

Algorithm 1 provides one implementation of the mapping
function (16). The transmission range is set to its maximum
level in free-flow traffic. In congested traffic, r is determined
by (6) and (7). Fig. 7 shows that the minimum of the values
returned by these two equations represents the transmission
range needed in congested traffic. In general, D(-) may depend
on other factors such as the desired level of path redundancy or
the percentage of equipped vehicles.

Algorithm 1 requires three constants, which are considered
design parameters. The value of oL [from (7)] is used to fine-
tune the value of transmission range returned in congested
traffic. The effect of this parameter is discussed in Section VI-C.
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Fig. 7. Values of transmission range returned by the DTRA algorithm versus

the estimated vehicle density.

The parameter N = \/umax = 0.1 is determined analytically
for the NaSch model, as shown in Table I. The maximum
range (MR) depends on the available transmitter power and the
specifications of the physical layer.

The MR is also used to replace the road length L in (6) and
(7) (lines 7 and 8, respectively). Since a vehicle has no informa-
tion about the actual road length, the choice of L = MR is the
most practical. This choice will result in some partitioning of
the VANET in roads of longer length (L > MR). However, the
risk of partitioning the network is unavoidable for a finite MR
value, as discussed in Section IV. On shorter roads (L < MR),
the algorithm will overestimate the TR values in congested
traffic (k > k.). Section VI-D suggests other practical methods
to determine the MR.

Fig. 7 shows the transmission-range values returned by
the DTRA algorithm in the entire range of vehicle density,
MR = L = 1000 m, and o = 0.25.

The choice of the maximum transmission range in free flow
is due to two reasons: 1) Estimation of density within the free-
flow traffic range is difficult, but it is easy to detect the free-flow
phase; 2) it is expected that the distance between vehicles in free
flow is long; therefore, a longer than optimal transmission range
does not have the same adverse affects as in a dense network,
and it can extend the lifetime of communication links as the
network topology changes.

Note that a practical algorithm would determine a power
level instead of a transmission range. The power level may
take any value in a set of possible power levels available to
the wireless interface. Here, the algorithm sets the transmission
range directly for an easy comparison with the network’s length
and the distance between vehicles.

C. Performance Evaluation of DTRA Algorithm

The DTRA algorithm described in Algorithm 1 is evaluated
using simulations of the four highway configurations described
in Section III-B. During the simulations, each vehicle estimates
the local density and applies the algorithm to determine its

own transmission range. The following metrics are used in the
evaluation:

1) Number of network partitions: This is used to measure
the network connectivity; a connected network consists
of one partition.

2) Average transmission range: The smaller value of the
transmission range implies a lesser power level and better
network spatial reuse.

To count the number of partitions in the network, 1) an MST
is constructed within the measurement section(s) (see below)
of the highway in the same way that was used to determine
the MTR in Section IV-B. The edges of the MST represent the
minimum distance between any two vehicles in the network.
2) Each edge in the MST is checked to determine if it satisfies
(4). Otherwise, the network is partitioned at that point, and
the number of partitions is increased by one. Note that the
procedure results in a network in which all communication links
are bidirectional.

In the racetrack configurations (A) and (B) of Section III-B,
data collection is restricted to a segment of length L ~ 1 km
located at the furthest distance from of the entry point so that
measurements are not effected by vehicle interactions at that
point. In the intersection configurations (C) and (D), data are
collected in two 1-km segments immediately upstream and
downstream from the intersection.

Fig. 8 shows the average number of partitions and the average
transmission range along the density range in different highway
configurations. Line and symbol types correspond to different
choices for the parameter « in (7), which sets the transmission
range in the dense traffic. Fig. 8(a) and (b) shows that the aver-
age number of partitions remains very close to one in highway
scenarios (A) and (B). The transmission range drops quickly
near the critical density while maintaining (or improving) the
level of connectivity in racetrack configurations.

Fig. 8(a) and (b) shows the effect of raising the transmission
range by a factor of aL. While there is little difference be-
tween the choice of 0.25L and 0.15L, the number of partitions
increases noticeably at OL. The latter sets the range below
the mean MTR of the single-lane highway and at roughly the
mean MTR in the multilane highway [see Fig. 4(a) and (b) in
Section IV-B]. This indicates that the vehicles are able to set
their transmission range very close to the optimal value in dense
traffic.

The intersection scenarios are challenging for the DTRA
algorithm since the network’s condition changes rapidly at both
sides of the intersection, which requires fast switching of the
transmission range from low (while vehicles are slowing or
stopped) to high (after passing the intersection). This condition
is depicted in Fig. 8(c) and (d) by the absence of data points in
the density range [0.1, 0.3] due to the instantaneous change in
the vehicle density across the intersection.

Fig. 8(c) and (d) show higher number of partitions across the
density range, which can be attributed to the slower reaction
to the change in the traffic condition. The figure, which corre-
sponds to a signalized intersection and stop-sign intersections
[Configuration (C) and (D), respectively] shows similar results
in the high density region. In both cases, the mean headway
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(inter arrival time) between vehicles is smaller than the delay
encountered at the intersection, which results in a traffic jam
upstream from the intersection. The average transmission range
in the high-density region [0.4, 0.8] is slightly higher than the
corresponding region in the racetrack scenarios, particularly at
the lower end. The reason for this difference is the influence
of incoming vehicles that approach the intersection with a
maximum transmission range (due to free-flow traffic upstream
of the intersection) and then decelerate rapidly to join the queue
behind the intersection.

Despite the relatively slower reaction to the change in traffic
condition, which is expected due to the use of the time window
T}, the DTRA algorithm is quite successful in maintaining the
connectivity by keeping the average number of partitions low.
Table II offers a detailed description of the network connectivity
in each of the above configurations by listing the fraction
of time in which the network is connected (one partition) or
divided into two, three, or four partitions.

Table II indicates that 1) in the racetrack scenario the upper
bound of transmission range given by (7) (« = 0) is sufficient
to maintain the network connectivity 95.93% of the time or
higher. 2) In the signalized intersection, the increase in the

upper bound of transmission range has a significant impact
on the connectivity since it increases the time the network
is connected by more than 11% upstream of the intersection
(the congested side) and about 4% downstream (the free-flow
side). It is also noted that the signalized intersection is the
only highway configuration where the number of partitions may
increase to four. This occurs in the congested area upstream
from the intersection. This area is the most dynamic where
some vehicles are discharging from the queue in the green-
phase while others are joining the queue of stopped vehicles.
3) In the stop-sign intersection [configuration (D)], the con-
gested area upstream from the intersection remains connected
most of the time. In the free-flow region downstream, the parti-
tioning of the network is not due to the level of transmission
range but is due the slow reaction to the change in traffic
conditions.

D. Practical Considerations

It was assumed in Section VI-B that the DTRA algorithm
produces its result in the form of a real number that represents
a distance. This was intentional in order to compare the results
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TABLE 1II
PERCENTAGE OF PARTITIONS DURING SIMULATION TIME

Road partitions downstream partitions upstream
Configuration o 1 2 3 4 I [ 2 [ 3 71 4
(A) Racetrack 0.00 | 9593 | 3.98 | 0.08 [ 0.00
(1 lane) 0.15 | 98.75 | 1.25 | 0.00 | 0.00 N/A
0.25 | 98.87 | 1.13 | 0.00 | 0.00
(B) Racetrack 0.00 | 99.74 0.25 0.00 | 0.00
(3 lanes) 0.15 | 99.89 | 0.11 | 0.00 | 0.00 N/A
0.25 | 99.90 | 0.10 | 0.00 | 0.00
(C) Signalized 0.00 | 95.69 | 430 | 0.01 [ 0.00 | 79.91 | 18.56 | 1.49 | 0.05
Intersection 0.15 | 99.77 | 023 | 0.00 [ 0.00 | 90.94 | 8.80 | 0.26 | 0.01
0.25 | 99.97 | 0.03 | 0.00 [ 0.00 | 90.94 | 879 | 0.26 | 0.01
(D) Stop sign 0.00 | 39.01 | 55.89 | 5.10 [ 0.00 | 98.24 | 1.75 | 0.01 | 0.00
Intersection 0.15 | 68.86 | 31.14 | 0.00 [ 0.00 | 99.76 | 0.24 | 0.00 | 0.00
(gn=600 veh/hr) | 0.25 | 82.19 | 17.81 | 0.00 | 0.00 | 99.77 | 0.23 | 0.00 | 0.00
with the MTR under the same conditions. A practical algorithm VII. CONCLUSION

will likely produce a power level index that corresponds to one
of the power levels settings available for the transmitter. This
scheme allows the algorithm to be more flexible for several
practical considerations. For instance, in the early stages of
VANETSs implementation and marketing, only a small percent-
age of vehicles will be equipped with wireless transceivers. This
will make the perceived vehicle density on the highway much
less than the actual density because only the equipped vehicles
will participate in the VANET. As aresult, a certain power index
may correspond to a higher power setting when the fraction of
equipped vehicles was, for example, 10% than what it would
be if the fraction of equipped vehicles was 90%. Since the
algorithm is based on the actual vehicle density, which is not af-
fected by the marketing of VANET, the algorithm remains valid
and need not to be changed as more vehicles become equipped.
The same reasoning also applies to geographic, demographic,
or regulatory situations that require the power levels in one
region to be different from others.

Moreover, the association between the power index and the
actual power level can be determined statically or dynamically.

e The range may be determined statically by, for ex-
ample, standards. These standards may choose differ-
ent power levels for different geographic or regulatory
regions.

» The range can be estimated directly from traffic models.
In this case, the indexes must be set so that at least one
corresponds to the free-flow traffic region, while the rest
divides the remaining range equally. Algorithm 1 is a
special case of this scheme.

¢ An additional protocol may be used to determine the
power range for each index. The protocol does not need to
be used as frequently as some of the proposed protocols
in the literature since the power level does not change
frequently.

e The power level for each index may be determined dy-
namically by a central authority that broadcasts control
messages to vehicles entering a specific region (e.g., high-
way or city center). This suggests developing a protocol
that optimizes power consumption for other factors, such
as Quality of Service (QoS), at the region level and then
transmits the power level for each index to the vehicles
within the region.

The main contribution of this paper is the formulation of a
local density estimate based on traffic-flow models. This esti-
mate represents a novel approach to predicting vehicle density
that depends only on the vehicles’ mobility pattern.

One application of the density estimate is the DTRA
algorithm. The algorithm sets a vehicle’s transmission range
dynamically according to its local density. The result of using
this algorithm is a VANET whose nodes have a transmission
range that is dynamic and nonhomogeneous. Simulations show
that the DTRA algorithm is effective in maintaining a high
degree of connectivity in highway configurations where the
network topology changes rapidly.

The proposed scheme has several advantages. The algorithm
does not require any global information such as vehicle loca-
tions, nor does it require any exchange of information among
vehicles. Moreover, the algorithm inherently adapts to vehicle
mobility. The algorithm is also transparent to communication
protocols, which allows it to be used in combination with other
TPC protocols to enhance their performance with respect to
responsiveness to mobility or to provide an initial estimate of
transmission range before further refinement.

The ability to estimate the local vehicle density can be useful
for many other applications in VANET. Many protocols in
ad hoc networks are affected by the density of nodes (number
of neighbors). For instance, protocols that depend on message
broadcast can degrade the network performance due to ex-
cessive flooding. Information about local density allows these
protocols to adapt their operation to mitigate the negative
effects of flooding. Examples may include adjusting the interval
between “Hello” beacons according to the change in density,
adjusting the routing update interval for proactive routing pro-
tocols, or determining the probability of a packet retransmission
during message flooding. The local density information does
not require any additional overhead and adapts to vehicles’
mobility.

Currently, obtaining real-life traces to verify the proposed
methods is not feasible for the type and scale of the scenarios
presented in this paper. Real-field data must include the position
of vehicles in order to obtain transmission-range measurements.
This requirement suggests the need for instantaneous obser-
vations using video cameras or aerial photography. Therefore,
testing the density estimate and the DTRA algorithm using real-
field measurements remains an objective for future work.
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