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ABSTRACT 
Vehicular Ad Hoc Networks (VANET) have several 
characteristics that distinguish them from other ad hoc networks. 
Among those is the rapid change in topology due to traffic jams, 
which also disturbs the homogenous distribution of vehicles on 
the road.  For this reason, a dynamic transmission range is more 
effective in maintaining connectivity while minimizing the 
adverse effects of a high transmission power. 

We provide a relationship that allows vehicles to estimate the 
local density and distinguish between two phases of traffic, free-
flow and congested traffic. The density estimate is used to develop 
an algorithm that sets a vehicle transmission range dynamically 
according to local traffic conditions. 

Simulations of various road configurations show that the 
algorithm is successful in maintaining connectivity in highly 
dynamic networks.   

Categories and Subject Descriptors 
C.2.1 [Network Architecture and Design]: Wireless 
communication; 

General Terms 
Design, Performance. 

Keywords 
Ad Hoc Networks, Connectivity, Density estimation, Inter-vehicle 
communications, Transmission range, VANET. 

1. INTRODUCTION 
Vehicular Ad Hoc Networks (VANET) have several 
characteristics that distinguish them from other mobile ad hoc 
networks. Common mobility models of mobile ad hoc networks 
(MANET) allow node mobility (determined by speed or pause 
time) to be considered independently of their density in protocols 
development and performance evaluation. In contrast, car-

following models [18,24] show that the average speed of vehicles 
is a function of vehicle density. This provides the motive to use 
density as a single metric describing the nodes’ mobility in 
VANETs. 

Node density has a great impact on the performance of ad hoc 
networks by influencing factors such as capacity, routing 
efficiency, delay, and robustness. Waves of traffic jams, whether 
caused by constraints in the transportations network, traffic 
controls, or driving fluctuations, cause the network’s density to 
vary from one location to another; thus disturbing the 
homogenous distribution of nodes. Moreover, the abrupt and 
frequent change in density creates a highly dynamic topology. 
This topology change would cause severe degradation to the 
network’s performance (increased collisions and interference, 
excessive broadcasts, too many routing paths, etc.) if protocols in 
VANETs were not designed to handle such conditions. 

Controlling the communication range by adjusting the 
transmission power can be used to mitigate the adverse effects of 
high density condition. The choice of the communication range 
has a direct impact on a fundamental property of an ad hoc 
network, the connectivity. In a VANET, a static transmission 
range cannot maintain the network’s connectivity due to the non-
homogenous distribution of vehicles and rapid change of traffic 
conditions. It is shown in [10,23] that a dynamic transmission 
range is needed to maintain connectivity in non-homogeneous 
networks to take advantage of power saving and increased 
capacity.  

In this paper we derive a relationship that allows a vehicle to 
estimate the local density. This relationship is used to set the 
vehicle’s transmission range dynamically. The result is a highly 
dynamic transmission range algorithm that requires no external 
information (such as vehicle position). Moreover, there is no 
communication overhead involved since the algorithm uses only 
the vehicle’s internal state to determine the transmission range. 
The algorithm is transparent to the data communications 
protocols. Therefore, it can be integrated with existing systems 
with little or no change to the latter. The algorithm is highly 
adaptable to traffic conditions (density and speed) that may 
change in a very short time due to traffic jams. 

The paper is organized into nine sections as follows: The related 
work is summarized in Section 2. In Section 3, a brief 
introduction to traffic theory is provided. Section 4 describes the 
road configurations used in the simulations and the 
communications model. In section 5, we show the effect of 
density on the minimum transmission range. The density 
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estimation scheme is provided in Section 6. Section 7 describes 
the dynamic range algorithm followed by its performance 
evaluation in Section 8. The summary and conclusions are 
provided in Section 9. 

2. RELATED WORK 
Vehicular ad hoc networks can be considered examples of 1-
dimensional networks, where nodes (vehicles) are placed along a 
line. Connectivity in these networks is studied extensively in the 
literature. A 1-D network is considered connected if there is no 
gap wider than the transmission range between any pair of 
successive nodes. Santi and Blough estimate the lower and upper 
bounds for the transmission range in [27] and Desai and 
Manjunath [7] provide a probability for gap existence among 
nodes.  

In networks of infinite size, the transmission range is related to 
node density rather than the line’s length [6]. Connectivity in 
infinite networks is limited to short range communications and a 
large-scale ad hoc network is not feasible because it is almost 
surely divided into an infinite number of partitions. The same 
conclusion applies also to strip networks (networks of infinite 
length in one dimension and a finite length in the other) [8]. 

The work presented in [6-8,27] assumes a homogenous 
distribution of nodes. It will be shown in Sections 3 and 5 that 
this assumption is not always valid in VANETs due to traffic jams 
and bottlenecks. 

Our approach to dynamic range assignment in Section 7 is closely 
related to a class of topology control algorithms that control a 
node’s degree (number of neighbours) by adjusting the 
transmission power [15]. These protocols depend on an exchange 
of information such as in [17] or on some protocol feature as in 
[3]. Our algorithm, on the other hand, depends only on a vehicle’s 
mobility and does not require the exchange of messages. 
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Figure 1 Flow-density relationship. 

Many studies in VANETs focus on free-flow traffic in their 
design and analysis of new protocols (e.g. [5,14,26]). The studies 
that investigate connectivity either analytically or using 
simulations also set the traffic conditions to free flow [9,25]. This 
choice allows for the greatest flexibility in controlling each of the 
vehicle traffic parameters (speed, flow, and density) 
independently. We deal with the entire density range and show 

that mobility and speed cannot be always distinguished from 
density. 

3. INTRODUCTION TO TRAFFIC 
THEORY 

Traffic flow theories explore relationships among three main 
quantities; vehicle density, flow, and speed. The flow q, measures 
the number of vehicles that pass an observer per unit time. The 
density k, represents the number of vehicles per unit distance. The 
speed u, is the distance a vehicle travels per unit time. The units of 
these quantities are usually expressed in (veh/hr/lane), 
(veh/km/lane), and (km/hr), respectively.  

In general, traffic streams are not uniform, but vary over both 
space and time. Therefore, the quantities q, k, and u are 
meaningful only as averages or as samples of random variables 
[12]. The three quantities are related by the so-called Fundamental 
Traffic Flow relationship [11], 

kuq ⋅=  (1) 

Several theories attempt to define the relationships among each 
pair of variables in (1), but no single theory provides the complete 
picture. The following subsections provide a brief introduction to 
principles most relevant to the scope of this paper. 

3.1 Speed-Density Relationship 
Car-following models [24] provided an early means to describe 
the speed-density relationship. These models apply to single-lane, 
dense traffic with no overtaking allowed. They also assume that 
each driver reacts in some specific fashion to a stimulus from the 
vehicle(s) ahead or behind. The models do not apply in low 
densities where interactions between vehicles disappear. The basic 
equation describing a car-following model is [4]: 

StimulusySensitivitResponse ×=  (2) 

The response may be interpreted as the acceleration of the 
following vehicle and the stimulus is the relative speed or distance 
between the following vehicle and the leading vehicle. 

A class of car-following models assumes that drivers maintain 
constant time headway between vehicles. The model proposed by 
Pipes [21] results in the following speed-density relation [11,21]: 









−=

Jkk
u

11λ  (3) 

where λ measures the sensitivity of the vehicle interaction and kJ 
is the maximum vehicle density at traffic jam. 

3.2 The Fundamental Diagram of Road 
Traffic 
The Fundamental Diagram of Road Traffic describes the flow-
density relationship. A typical q-k relationship follows the general 
shape of Figure 1. The figure shows that the flow is zero when 
there are no cars on the road, and also when there is a complete 
traffic jam at maximum density, kJ. The shape of Figure 1 suggests 
that there are two q-k regimes. The left branch (OA) of the 
relationship represents free-flow traffic at densities below k1. In 
the free-flow phase, interactions between vehicles are rare because 
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of the low density. As a result, vehicles can travel at free-flow 
speed uf, determined by the slope of the left branch, uf=q/k. At 
densities above k2, traffic become congested and hindered by 
traffic jams. The q-k relationship of the congested traffic is 
represented by the right branch (AC). Empirical evidence and 
traffic simulations suggest that traffic may also be in a coexistence 
phase. In densities between k1 and k2, drivers may accept shorter 
headway (time gap) between vehicles; thus, achieving the 
maximum flow qm, at the critical density, k2. High fluctuations of 
speed in this traffic phase may cause a break down in the flow and 
derive the traffic into the congested phase. 

At densities higher than k1, speed can be expressed as a function 
of density as in (3). By substituting (3) in (1) and accounting for 
low-density traffic, a piecewise linear q-k relationship can 
represent the OAC triangle of Figure 1 [11], 
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k
qkuq 1,min 1  (4) 

where q1=q(k1)≈λ. 

3.3 Traffic Jams and Phase Transition 
Traffic jams are caused by geometric constraints, such as a red 
light, an accident, or an access ramp. These scenarios can be 
described by a standard queuing system where the jam at the 
bottleneck will grow spatially backward if the arrival rate (inflow) 
is greater than the service rate (outflow) of the bottleneck. The 
spatial growth can be described also by the theory of kinematic 
waves [16]. 

It is also suggested that waves of traffic jams may occur without 
the presence of obvious constraints but mainly due to fluctuation 
(noise) in speed. These fluctuations may be caused by bumps, 
curves, lapses of attention, and different engine capabilities. In 
moderate traffic flow, a noise of high amplitude may cause the 
traffic to become unstable and traffic jams start to appear [18]. 
This type of traffic jams can be described by the theory of 
kinematic waves, and has been studied extensively using Cellular 
Automata (CA) models [13,19]. 
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Figure 2 Space-time diagram illustrating phase-transition 
from free-flow to congested traffic. 

The transition from free-flow traffic to congested traffic can be 
described with the help of the space-time diagram of Figure 2. A 
space-time diagram shows vehicle positions as they would appear 

in a series of aerial photographs taken at fixed time intervals of a 
road section and lined-up vertically according to their time index. 
A vehicle moving at constant speed will appear as a series of dots 
arranged diagonally in the space time diagram, while a stationary 
vehicle will appear as a column of dots. 

The top section of Figure 2 shows the traffic flow at density 
slightly lower than k1 (of Figure 1) where a vehicle can travel 
freely without influence from other vehicles. The middle section 
shows traffic whose density is in the range [k1, k2]. At this density, 
drivers may adapt to the dense traffic by slowing down and 
maintaining a minimum safety distance. However, high 
fluctuations in speed by a lead vehicle may break the flow and 
create traffic jams. A traffic jam appears in the middle section of 
Figure 2 as dark clusters of dots moving backward against the 
traffic direction. Vehicle that are not caught in jams are traveling 
in free-flow traffic. Traffic jams grow as density increases and 
merge with other traffic jams, as shown in the bottom section of 
Figure 2. Ultimately, the entire road section is occupied with one 
wide traffic jam. 

4. VEHICLE NETWORK SIMULATION 
The following two subsections describe the simulation setup used 
for this work.  

4.1 Vehicle Mobility 
Vehicle movement traces are generated using a traffic 
microsimulator based on a CA model [2]. Three road 
configurations are used for the experiments described later to 
represent distinct traffic situations. Traffic density is increased 
gradually in two configurations so that traffic conditions can 
change gradually from free-flow to congested traffic. In the third 
configuration, an intersection controlled by traffic lights is used to 
cause a rapid change in vehicle density across the intersection. 

In single-lane roads with no overtaking, vehicles will travel at the 
speed of the slowest vehicle regardless of their maximum speed 
capabilities. Therefore, all vehicles have the same maximum 
speed of 135km/hr in simulations of single-lane roads while the 
three-lane road configuration includes vehicles of various 
maximum speeds. Note that the maximum speeds are meaningful 
only as free-flow speeds. In higher densities, vehicles travel at 
lower speed, which is unrelated to their maximum speed. 

 

Figure 3 Road configurations: a) Racetrack; b) Intersection. 
The data collection is limited to the shaded area. 

In the first configuration, vehicles travel in a single-lane road 
where overtaking is not allowed. The road is in the form of a 
racetrack of 7.5 km length (Figure 3a). Vehicles enter from a 
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parking facility at a rate (flow) of 60veh/hr and continue to travel 
around the track indefinitely, which causes vehicle density to 
increase until the jam density is reached and no more vehicles can 
enter. 

The racetrack road in the second configuration has three lanes, 
which allows the vehicles to change lanes in order to pass each 
other. Vehicles in this configuration are divided into three classes. 
Slow vehicles compose 15% of all vehicles and their maximum 
speed is set to 81km/hr. Another 15% of vehicles can travel at 
maximum speed of 135km/hr. The remaining vehicles have a 
maximum speed of 108km/hr. This distribution reflects the 85th 
percentile rule that is used as a guide to set the speed limit on 
highways so that 85% of vehicle will travel below the limit. The 
flow rate of vehicles is set to 300veh/hr/lane. 

The third configuration (Figure 3b) consists of a single-lane road 
with a traffic signal controlled intersection in the middle. Vehicles 
enter from a parking facility at one end of the road, at rate of 
1800veh/hr/lane, and exit from the other end. The traffic signal 
has a cycle of one minute divided equally between red and green. 
In this open-loop road, a traffic jam occurs behind the red light. 
The combination of traffic inflow and the red light duration 
ensures that the traffic jam is created periodically throughout the 
simulation.  

In racetrack configurations, data collection is restricted to a 
segment of length L≈1km located at the furthest distance from of 
the entry point so that measurements are not effected by vehicle 
interactions at that point. In the intersection configuration, data is 
collected in two 1km segments immediately before and after the 
intersection. The segment is chosen to be of length comparable to 
the maximum transmission range of recent proposed standards 
such as Dedicated Short Range Communications (DSRC). The 
segment also represents a proper sized network for some 
applications, such as safety messaging. 

In all experiments, data is collected from 20 simulation runs. 
Depending on the configuration, simulation time ranges form 
25,000 to 60,000 seconds. 

4.2 Communications Model 
The VANET is represented as a graph G(V, E), where a set of 
vertices V represents vehicles, and a set of edges E represents 
direct communication links. In the simple communication model 
that is used here, a communication link, ei,j=(vi, vj) exists if and 
only if the Euclidean distance between vehicles vi and vj is less 
than or equal to the shortest transmission range between them, i.e, 

{ }),min(||),( 2
jijiji rrxxVvvE ≤−∈=  (5) 

where xi, ri are the position and transmission range of the node vi, 
respectively. Equation (5) implies that the graph G(V, E) is a 
undirected graph.  

5. MINIMUM TRANSMISSION RANGE 
AND CONNECTIVITY IN VEHICLE 
NETWORKS 

Considerable effort has been directed towards the study of 
connectivity in 1- and 2-dimensional ad hoc networks. A major 
factor of maintaining connectivity in these networks is the choice 
of the minimum (critical) transmission range (MTR) that 

guarantees that a network is connected (i.e. each node has a least 
one path to every other node). 

In this section, we illustrate the effect of vehicle traffic 
characteristics on the MTR when density is changed from free-
flow to a total traffic jam. We should emphasize that increasing 
the density not only increases the number of vehicles on the road 
but also creates traffic jams and lowers the average speed of 
vehicles when the density is higher than some critical density.     
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Figure 4. MTR statistics in a) 1-lane road, and b) 3-lane road. 
c) MTR values near a traffic light (99% of points are removed 

to reduce the clutter) 
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In general, the MTR is determined by constructing a minimum 
spanning tree (MST) among all vehicles in the network. The MTR 
is the longest edge in the MST [20]. In a single-lane VANET, the 
MTR is the widest gap between any two consecutive vehicles. 

Simulations are used to determine the MTR needed to connect the 
wireless network among vehicles in the road configurations of 
Section 4.1. The MTR is determined in every simulation time-step 
and stored along with the vehicle density. The data collected from 
the simulations is classified into 100 density intervals that cover 
the entire density range. The basic statistics of the MTR are 
calculated within each energy interval to plot MTR vs. density 
values for each scenario. 

The solid line in Figure 4a shows the mean value of MTR vs. 
density in the single-lane road configuration. At low densities, the 
MTR decreases as density increases. At the transition point 
between free-flow and dense traffic, the MTR increases again then 
resumes its decline until it reaches its minimum value at total 
traffic jam. Figure 4a indicates that, despite the higher density, a 
longer MTR is needed to connect the vehicles near the phase 
transition point of k~1/6. 

The sudden increase in MTR near the point of phase transition is 
caused by the creation of traffic jam waves that result in some 
vehicles being clustered in small areas while other are spread in 
less dense traffic, which has the effect of disturbing the 
homogenous distribution of vehicles (as shown in the middle 
section of Figure 2). As density increases, traffic jams increase in 
size and merge with others until the entire road is occupied by one 
large traffic jam. Consequently, the MTR decreases until it 
reaches its minimum value of 1/kJ (the distance from front-bumper 
to front-bumper between two vehicles).  

The plot of average MTR and the average maximum MTR are 
compared to three other relations: The curve ln(L)/k [5] provides 
the theoretical lower bound of MTR. The absolute maximum 
MTR, rmax, for a network of finite length, L, is needed if all but 
one vehicle are packed at distance of 1/kJ from each other in one 
side in the network while the remaining vehicle is located at the 
opposite side; therefore, 

JJ kk

k
Lr

1
1max +








−=  (6) 

The graph in Figure 4a shows that the average maximum MTR 
can be approximated by shifting up the upper bound in [27] by 
some factor, aL, 

aLkLLr +≤ /)ln(  (7) 

where a=0.25.  

In the multi-lane configuration, vehicle locations are more 
homogenously distributed along the road’s length as the number 
of lanes increases. As a result, Figure 4b shows a slight increase in 
the mean MTR value near the critical density (which is now 
moved to k~1/4 due to the lower average free-flow speed). The 
MTR is lower than the single-lane case by a factor of 3 due to the 
increase in the number of vehicles by the same factor to achieve 
the same density (per lane). The average maximum MTR can be 
approximated by (7) with a=0.  

Instead of the MTR statistics, Figure 4c shows the actual MTR 
values to emphasize the effect of the abrupt change in traffic 
conditions from dense traffic behind a red light to free-flow a few 
seconds after the light turns green. This situation is illustrated in 
Figure 4c by the presence of two clusters of MTR values. The 
clusters at high and low densities correspond to vehicles behind 
and after the intersection, respectively. The gap between the 
clusters indicates that the transition between the two densities is 
abrupt and takes the form of a shock wave [16]. 

6. DENSITY ESTIMATION 
In this section, it will be shown that a vehicle can estimate the 
local vehicle density using its own movement pattern. This 
estimate is based on traffic theory and the phase transition analogy 
described in Section 3. 

6.1 Density Estimate 
Traffic Flow theories suggest that the average vehicle speed can 
be expressed as a function of density, 

)(kfu =  (8) 

The fraction of vehicles stopped in traffic fs, is related to the 
average speed of vehicles (including the stopped vehicles) [1], 

1)1( +−= n
sf fuu  (9) 

where n is a parameter that indicates the quality of service in the 
transportation network.   

The value of fs can be measured by an external observer counting 
the number of vehicles in the traffic. The two-fluid theory relates 
the time a test vehicle circulating in a network is stopped, Ts, to 
the average fraction of vehicles stopped, fs during the same period, 
T [1], 

TTf ss /=  (10) 

Equation (10) represents an ergodic principle embedded in the 
model, i.e., the network conditions can be represented by a single 
vehicle appropriately sampling the network. 

Given a u-k relationship such as (3), a normalized density value 
k ′ , is given by 

[ ] 11/ −+′′=′ λuk  (11) 

where Jkkk /=′ , fuuu /=′ and )/( Jf kuλλ =′ .  

From (9), and (10), the normalized average traffic speed is: 

1)/1( +−=′ n
s TTu  (12) 

Equation (12) can be substituted in (11) to provide the means for 
a vehicle to estimate the density of the surrounding traffic by 
monitoring its stationary time. We denote the density estimate by 
K, therefore,  

[ ] 11 1/)/1(
−+ +′−= λn

s TTK  (13) 
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Equation (13) inherits the limitations of the car-following model, 
which means that it cannot provide an estimate of density in free-
flow traffic where there are no interactions between vehicles. 

Before estimating vehicle density using (13), the values of n and 
λ, and T must be determined. Both n and λ reflect the traffic 
service level of the road and can be determined statistically. Our 
simulations show that, in highway scenarios, n~0 and 1/λ~2s, 
which is linked to the safety time headway between vehicles that 
results in a flow (q(k1) in Figure 1) of just below 1800 
(veh/hr/lane). 

The choice of the window size, T, depends highly on the rate of 
change in traffic conditions; a small value of T results in a noisy 
estimate, while a large T increases the estimate lag beyond 
usefulness. The simulations show that a choice of T=10s results in 
a high correlation between the actual density and its estimate. 

6.2 Order Parameter 
In physics, phase transition is characterized by an order 
parameter. A substance in an ordered state has an order parameter 
of non-zero value. The order parameter takes the value of zero in 
the disordered state. A similar concept can be used to describe the 
state of vehicular traffic. Vehicles in a traffic jam can be 
compared to a liquid with an order parameter of a value equal to 
the fraction of stopped vehicles, fs. Traffic enters a disordered 
state when more vehicles move freely, similar to gas molecules, 
and the order parameter approaches zero [18,22]. 

In free-flow traffic, all vehicles are moving (fs=0). Once a traffic 
jam is created, vehicles stop when they join the traffic jam at its 
end while other vehicles at the front accelerate away from the 
traffic jam. From an observer’s perspective, there is always a 
fraction of vehicles which are completely stopped (fs>0).  

From a single vehicle perspective, only the presence of a local 
order (a local traffic jam) is detectable if Ts/T is used. This 
provides useful information since a vehicle in a VANET is most 
affected by its local conditions (e.g. in medium contention). A 
vehicle may use the value of Ts/T directly to detect whether it is 
traveling in free-flow or congested traffic.   

6.3 Evaluation 
Simulation of Section 4.1 road configurations are used to 
determine whether equations (10) and (13) can provide a 
reasonable indication of change in traffic conditions and estimate 
the density. Vehicles calculate the ratio Ts/T and K in every 
simulated time step. This information is later compared with the 
actual density from an observer’s perspective. Since vehicle 
density changes over space and time, the measure of the density 
over the entire road segment does not reflect the local traffic 
conditions experienced by vehicles. Therefore, to measure local 
densities, the entire road segment of 1km is divided into short 
sections of 150m length each. 

Figure 5 shows a relationship between vehicle density in each 
section and the average value of Ts/T (=fs) calculated by the 
vehicles that pass through that section. The plot corresponding to 
the 1-lane road shows a sudden increase in the value of fs at point 
near k=1/6 where the phase change occurs. Note that this is the 
point where the MTR increases in Figure 4a. Recall that in the 3-
lane configuration, simulation setup sets the maximum speed of 

most vehicles lower than that of the 1-lane configuration. As a 
result, the slope of the free-flow branch of the q-k relation (Figure 
1) is lower and the critical density occurs at higher density than 
that of the 1-lane configuration, k=1/4. These observations 
support the discussion of the previous section; the value of 
fs=Ts/T can be used as an indicator of the existence of free-flow 
condition when fs=0.  

Figure 6 shows that the K-k relation deviates from a straight line 
at densities within the free-flow range (k<1/6 for 1-lane 
configuration and k<1/4 for 3-lane configuration). Within this 
range, equation (13) has a constant value of ~0.1 when Ts=0 (the 
vehicle is in constant motion). At higher densities, the estimate K 
approaches the K=k line in both road configurations. 
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Figure 5. Order parameter vs. vehicle density in 1- and 3-lane 
roads. 
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Figure 6. Density estimate, K, vs. actual density, k, in 1- and 3-
lane roads. 

7. DYNAMIC TRANSMISSION RANGE 
ALGORITHM 

It can be concluded from Figure 4 that if all vehicles had to use a 
common static transmission range for communication, the range 
should keep the vehicular network connected in all traffic 
conditions. This can be achieved only if the transmission range is 
high enough to accommodate conditions such as free-flow traffic 
and traffic across intersections.    
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Alternatively, estimation of traffic density provides the necessary 
means to develop an open-loop power control algorithm to set a 
vehicle’s transmission range dynamically as traffic conditions 
change. In its basic form, the algorithm maps the time-varying 
values of Ts/T into a transmission range, r at regular time 
intervals, 

)/( TTgr s=  (14) 

The pseudo code shown in Figure 7 gives one implementation of 
the mapping function (14). The transmission range is set to its 
maximum level in free-flow traffic. In dense traffic, r is 
determined by the minimum of equations (6) and (7). In general, 
g(.) may depend on other factors such as the desired level of path 
redundancy or the percentage of equipped vehicles. The choice of 
the maximum transmission range in free-flow is due to two 
reasons: 1) estimation of density within the free flow traffic range 
is difficult, but it is easy to detect the free-flow phase; 2) it is 
expected that distance between vehicles in free-flow is long; 
therefore a longer than optimal transmission range will not have 
the same adverse affects as in dense network and can help 
maintain the network stability. 

Note that a practical algorithm would determine a power level 
instead of a transmission range. The power level may take any 
value in a set of possible power levels available to the wireless 
interface. We deal with the transmission range directly for an easy 
comparison with the network’s length and the distance between 
vehicles. 

Figure 7. Dynamic transmission range algorithm. 

8. PERFORMANCE EVALUATION 
In this section we present several simulation results to 
demonstrate the effectiveness of the dynamic transmission range 
algorithm. We use the following metrics in the evaluation: 

1. Number of network partitions: this is used to measure the 
network connectivity; a connected network consists of one 
partition. 

2. Average transmission range: a smaller value of the 
transmission range implies less power level and better 
network spatial reuse.  

The core algorithm described in Figure 7 is evaluated using 
simulations of the three road configurations described in Section 
4.1. During the simulation, each vehicle estimates the local 
density and applies the algorithm to determine its own 
transmission range. 

To count the number of partitions in the network: 1) A MST is 
constructed within the measurement section(s) of the road in the 
same way used to determine the MTR in Section 5. The edges of 
the MST represent the minimum distance between any two 
vehicles in the network. 2) Each edge in the MST is checked; if 
the edge does not satisfy equation (5), the network is partitioned 
at that point and the number of partitions is increased by one. 
Note that the procedure results in a network in which all 
communication links are bidirectional. 
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Figure 8. Vehicle density vs. number of partitions and average 
transmission range in a) 1-lane racetrack, b) 3-lane racetrack, 

and c) signalized intersection. 

- a is a constant 
- MR is the maximum transmission range 
INPUT: fraction time stopped, Ts/T 
OUTPUT: transmission range, TR 
 
K=estimte_K(Ts/T) 
if Ts/T==0 then 
     TR = MR 
else 
     TR = min(MR*(1-K), sqrt(MR*ln(MR)/K+a*MR) 
end 
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Figure 8 shows the average number of partitions and the average 
transmission range along the density range in different road 
configurations. The different line types correspond to different 
choices for the parameter a in equation (7), which sets the 
transmission range in the dense traffic. Figure 8a,b show that the 
average number of partitions remains very close to one in 
racetrack scenarios. The transmission range drops quickly, near 
the critical density to approximately 10% of the maximum range 
while maintaining (or improving) the level of connectivity in 
racetrack configurations. 

The figures also show the effect of changing the upper bound of 
the transmission range by shifting it up by a factor of aL. While 
there is little difference between the choice of 0.25L and 0.15L, 
the number of partitions increases noticeably at 0L. The latter sets 
the upper bound below the mean MTR of the single-lane road and 
at roughly the mean MTR in the multi-lane road (Figure 4a,b). 
This indicates that the vehicles are able to set their transmission 
range very close to the optimal value in dense traffic. 

The intersection scenario represents a challenging case for the 
dynamic transmission range algorithm since the network’s 
condition changes rapidly across the traffic light, which requires 
fast switching of the transmission range from low (while vehicles 
are slowing or stopped) to high (while passing the intersection). 
The figure shows a higher number of partitions across the density 
range, which can be attributed to the slower reaction to the change 
in traffic condition. Nevertheless, Figure 8c shows that the 
average number of partitions remains low. 

A closer look reveals that, when the lowest upper bound (0L) is 
used, the network behind the traffic light is connected ~80% of 
the time, while the network ahead of the traffic light remains 
connected ~96% of the time. The networks are partitioned into 
two partitions in ~16% and ~4% of the time, respectively. 

9. SUMMARY AND CONCLUSIONS 
A Vehicular Ad Hoc Network (VANET) is affected by the 
characteristics of traffic flow. Vehicle density influences the 
average speed of vehicles; thus, affecting the network’s mobility. 
The density also affects the network topology by creating a non-
homogenous distribution of vehicles due to traffic jams. Traffic 
theories show that traffic jams are caused not only by constraints 
in the transportation network but also by fluctuations in driving in 
dense traffic. The effect of these traffic jams on VANET is an 
abrupt change in network topology. 

In this paper, we propose a relationship to estimate the local 
density for each vehicle based on its movement pattern. This 
estimate can be used by many VANET protocols to set the 
parameters that depend on traffic conditions (e.g., Hello interval). 

We used the density estimate to set the vehicle transmission range 
dynamically according to its local density. Simulations show that 
the dynamic transmission range algorithm is effective in 
maintaining a high degree of connectivity in road configurations 
where the network topology changes rapidly. 

The proposed scheme has several advantages. The algorithm does 
not require any global information such as vehicle locations, nor 
does it require any exchange of information among vehicles. 
Moreover, the algorithm inherently adapts to vehicles mobility. 

The algorithm is considered transparent to communications 
protocols, which allows its use in combination with other 
topology control protocols to achieve application-specific goals, 
or to provide an initial estimate of transmission range before 
further refinement. 

A future study will involve a comparison of VANET performance 
using the dynamic range algorithm and other topology control 
algorithms that are based on message-exchange schemes. 
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